Abstract

Parasitoids employ different types of host-related volatile signals for foraging and host-location. Host-related volatile signals can be plant-based, originate from the herbivore host or produced from an interaction between herbivores and their plant host. In order to investigate potential sex- and species-related differences in the antennal response of parasitoids to different host-related volatiles, we compared the electroantennogram (EAG) responses of both sexes of the specialist parasitoid, Microplitis croceipes (Cresson), and the generalist, Cotesia marginiventris (Cresson), to varying doses of selected plant-based host-related volatiles: two green leaf volatiles (cis-3-hexenol and hexanal) and three inducible compounds (cis-3-hexenyl acetate, linalool, and (E,E)-alpha-farnesene). Mating had no significant effect on EAG response. Females of both species showed significantly greater EAG responses than conspecific males to green leaf volatiles, which are released immediately after initiation of herbivore feeding damage. In contrast, males showed greater responses than conspecific females to inducible compounds released much later after initial damage. Cotesia marginiventris females and males showed greater EAG responses than counterpart M. croceipes to the tested compounds at various doses, suggesting that the generalist parasitoid shows greater antennal sensitivity than the specialist to the tested host-plant volatiles. These results are discussed in relation to the possible roles of green leaf volatiles and inducible compounds in the ecology of female and male parasitoids.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.