Abstract

ABSTRACT Land-use changes from native pastures to forest plantations in humid temperate areas have raised concerns about their potential impact on the environment. This study aimed to assess the effects of such changes on soil water properties, focusing on the impact of the forest species planted and their relationship with changes in soil C content. Specifically, we aimed to identify the development of surficial soil hydrophobicity and changes in soil water holding capacity. A long-term forest experiment with variable planting densities (816, 1111, and 2066 trees ha -1 ) of Eucalyptus grandis Hill ex Maiden and Pinus taeda L. was established in 2004 on native pasture vegetation. Undisturbed soil samples (0.00-0.03 m soil layer) were extracted from the experiment and surrounding pastures and soil water repellency was determined by the water drop penetration time (WDPT) method at three soil matric potential levels (SMP). Bootstrapping was used to test if the sample size was sufficient to obtain robust results. Replacing native pastures with forest plantations significantly increased surficial soil hydrophobicity, which was more pronounced under Eucalyptus grandis than under Pinus taeda. Soil water repellency increased with decreasing SMP, particularly in land-uses that generated higher initial hydrophobicity. Additionally, the soils under forest cover had less water retention capacity than those under pastures at each SMP, with larger differences when the soil was dried to more negative SMP. More research is necessary to determine if soil alterations from converting native pastures to forest plantations in temperate climates will lead to a significant decrease in soil water holding capacity and an increase in hydrophobicity at deeper depths.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.