Abstract

Waxy (Wx) protein is a granule-bound starch synthase (GBSS) responsible for amylose production in cereal endosperm. Eight isolines of wheat (Triticum aestivum L.) having different combinations of presence and absence of three Wx proteins, Wx-A1, -B1, and -D1, were produced in order to elucidate the effect of Wx protein deficiencies on the apparent amylose content and starch-pasting properties. An improved SDS gel electrophoresis showed that ’Bai Huo’ (a parental wheat) carried a variant Wx-B1 protein from an allele, Wx-B1e. Thus, wheat lines of types 1, 2, 4, and 6 examined in this study contained a variant Wx-B1 allele and not the standard allele, Wx-B1a. The results from 3 years of experiments using 176 lines derived from two cross-combinations showed that apparent amylose content increased the least in type 8 (waxy) having no Wx proteins and, in ascending order, increased in type 5 (only the Wx-A1 protein is present) <type 7 (Wx-D1) <type 6 (Wx-B1) <type 3 (Wx-A1 and -D1) <type 4 (Wx-A1 and -B1) <type 2 (Wx-B1 and -D1) <type 1 (three Wx proteins). However, Tukey’ s studentized range test did not detect significant differences in some cases. Densitometric analysis suggested that the amylose content was related to the amount of the Wx protein in the eight types. Parameters in the Rapid Visco-Analyzer test and swelling power were correlated to amylose content. Consequently, amylose content and pasting properties of starch were determined to be influenced the most by the lack of the Wx-B1 protein, followed by a lack of Wx-D1, and leastly by the Wx-A1 deficiency, which indicated the presence of differential effects of the three null alleles for the Wx protein.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call