Abstract

BackgroundChronic nicotine exposure produces neuroadaptations in brain reward systems and α4β2 nicotinic acetylcholine receptors (nAChRs) in the corticolimbic brain areas. We previously demonstrated opposite effects of nicotine exposure delivered by self-administration or pumps on brain reward thresholds that can be attributed to the different temporal pattern and contingency of nicotine exposure. We investigated the effects of these two factors on reward thresholds and somatic signs during nicotine withdrawal, and on nAChRs binding in corticolimbic brain areas. MethodsThe intracranial self-stimulation procedure was used to assess reward thresholds in rats prepared with pumps delivering various doses of nicotine continuously or intermittently. Separate group of rats were randomly exposed to nicotine via pumps (non-contingent) or nicotine self-administration (contingent) to determine [125I]-epibatidine binding at α4β2* nAChRs. ResultsWithdrawal from continuous non-contingent nicotine exposure led to significant elevations in thresholds and increases in somatic signs in rats, while there was no significant effect of withdrawal from intermittent non-contingent nicotine exposure at the same doses. nAChRs were upregulated during withdrawal from continuous non-contingent nicotine exposure. α4β2* nAChRs were upregulated in the ventral tegmental area and prelimbic cortex during withdrawal from non-contingent intermittent exposure and in the nucleus accumbens during withdrawal from contingent intermittent nicotine exposure to the same dose. ConclusionsDuring non-contingent nicotine exposure, the temporal pattern of nicotine delivery differentially affected thresholds and somatic signs of withdrawal. Upregulation of α4β2* nAChRs was brain site-specific and depended on both temporal pattern and contingency of nicotine exposure.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.