Abstract
Plant viruses encode RNA silencing suppressors (VSRs) to counteract the antiviral RNA silencing response. Based on in‐vitro studies, several VSRs were proposed to suppress silencing through direct binding of short‐interfering RNAs (siRNAs). Because their expression also frequently hinders endogenous miRNA‐mediated regulation and stabilizes labile miRNA* strands, VSRs have been assumed to prevent both siRNA and miRNA loading into their common effector protein, AGO1, through sequestration of small RNA (sRNA) duplexes in vivo . These assumptions, however, have not been formally tested experimentally. Here, we present a systematic in planta analysis comparing the effects of four distinct VSRs in Arabidopsis. While all of the VSRs tested compromised loading of siRNAs into AGO1, only P19 was found to concurrently prevent miRNA loading, consistent with a VSR strategy primarily based on sRNA sequestration. By contrast, we provide multiple lines of evidence that the action of the other VSRs tested is unlikely to entail siRNA sequestration, indicating that in‐vitro binding assays and in‐vivo miRNA* stabilization are not reliable indicator of VSR action. The contrasted effects of VSRs on siRNA versus miRNA loading into AGO1 also imply the existence of two distinct pools of cellular AGO1 that are specifically loaded by each class of sRNAs. These findings have important implications for our current understanding of RNA silencing and of its suppression in plants.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.