Abstract
Cyclooxygenases 1 and 2 are expressed in atherosclerotic arteries, and local generation of prostacyclin and prostaglandin E2 (PGE2) occurs. However, the role of cyclooxygenases and individual prostaglandins during plaque progression is currently uncertain. The present study characterizes the effect of vasodilatory prostaglandins on morphology, focal adhesion (FA) function, and migration in human aortic smooth muscle cells (SMCs). The stable prostacyclin analog iloprost transiently induced: (1) disassembly of FA and stress fibers, (2) partial retraction and rounding of SMCs, (3) hypophosphorylation of FA kinase (FAK) and paxillin, and (4) inhibition of platelet-derived growth factor-BB-induced migration. Inhibition of FAK phosphorylation and morphological changes were mimicked by forskolin, inhibited by H89, and prevented by the protein tyrosine phosphatase inhibitor vanadate and by calpeptin. PGE2 was by far less efficient with respect to all parameters investigated. This difference correlated with the respective cAMP induction in response to iloprost and PGE2. Inhibition of FAK phosphorylation and FA function is a new target of vasodilatory prostaglandins, which might be causally involved in the antimigratory effects of prostaglandins. Importantly, prostacyclin analogs and PGE2 differ dramatically with respect to dephosphorylation of FAK and inhibition of migration, which might be of relevance for their respective functions in atherosclerosis.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Arteriosclerosis, thrombosis, and vascular biology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.