Abstract

In a previous study, 10-day estradiol implant treatment truncated the FSH peaks that precede follicular waves in sheep, but subsequent ovine FSH (oFSH) injection reinitiated wave emergence. The present study's objectives were to examine the effects of a 20-day estradiol and progesterone treatment on FSH peaks, follicle waves, and responsiveness to oFSH injection. Also, different estradiol doses were given to see whether a model that differentially suppressed FSH peaks, LH pulses, or basal gonadotropin secretion could be produced in order to study effects of these changes on follicular dynamics. Mean estradiol concentrations were 11.8 +/- 0.4 pg/ml, FSH peaks were truncated, wave emergence was halted, and the number of small follicles (2-3 mm in diameter) was reduced (P < 0.05) in cyclic ewes given estradiol and progesterone implants (experiment 1). On Day 15 of treatment, oFSH injection failed to induce wave emergence. With three different estradiol implant sizes (experiment 2), estradiol concentrations were 5.2, 19.0, 27.5, and 34.8 (+/-4.6) pg/ml in control and treated ewes, respectively. All estradiol treatments truncated FSH peaks, except those that created the highest estradiol concentrations. Experiment 2-treated ewes had significantly reduced mean and basal FSH concentrations and LH pulse amplitude and frequency. We concluded that 20-day estradiol treatment truncated FSH peaks, blocking wave emergence, and reduced the small-follicle pool, rendering the ovary unresponsive to oFSH injection in terms of wave emergence. Varying the steroid treatment created differential FSH peak regulation compared with other gonadotropin secretory parameters. This provides a useful model for future studies of the endocrine regulation of ovine antral follicular dynamics.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.