Abstract

Neuronal differentiation of neural progenitor cells is regulated by a variety of growth and transcription factors, that not only regulate cell fate of the progenitor cells but that can also regulate neuronal morphology. Suppressor of cytokine signaling-2 (SOCS2) is an intracellular regulator of Growth Hormone (GH) signaling that is expressed in neural stem cells and neurons during development and is required to overcome the inhibitory effects of GH on neuronal differentiation. SOCS2 also promotes neurite outgrowth, however, whether the mechanism by which SOCS2 regulates neuronal differentiation and neurite outgrowth is the same is not clear. Furthermore, whether the over-expression of SOCS2 has physiological in addition to morphological effects is unknown. To address these questions, we differentiated adult neural progenitor cells derived from wildtype C57BL/6 or SOCS2 over-expressing transgenic mice (SOCS2Tg) in the presence or absence of GH and determined effects on neuronal differentiation and morphology. Compared to wildtype cells, differentiation of SOCS2Tg neurospheres resulted in increased neurogenesis, which was not inhibited by GH. The neurons derived from these cells appeared more complex, with increased neurite outgrowth and number. GH did not, however, have any effect on neurite outgrowth of wildtype or SOCS2Tg neurons. Furthermore, basic electrophysiological analysis of wildtype and SOCS2Tg neurons derived from the neurospheres showed that they were both of an immature electrophysiological neuronal phenotype, indicating that although SOCS2 expression can regulate neuronal morphology, it appears to have little effect on neuronal ion channel expression.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call