Abstract

Conformational properties of intrinsically disordered proteins (IDPs) are governed by a sequence-ensemble relationship. To differentiate the impact of sequence-local versus sequence-nonlocal features of an IDP's charge pattern on its conformational dimensions and its phase-separation propensity, the charge "blockiness" κ and the nonlocality-weighted sequence charge decoration (SCD) parameters are compared for their correlations with isolated-chain radii of gyration (Rgs) and upper critical solution temperatures (UCSTs) of polyampholytes modeled by random phase approximation, field-theoretic simulation, and coarse-grained molecular dynamics. SCD is superior to κ in predicting Rg because SCD accounts for effects of contact order, i.e., nonlocality, on dimensions of isolated chains. In contrast, κ and SCD are comparably good, though nonideal, predictors of UCST because frequencies of interchain contacts in the multiple-chain condensed phase are less sensitive to sequence positions than frequencies of intrachain contacts of an isolated chain, as reflected by κ correlating better with condensed-phase interaction energy than SCD.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.