Abstract

This study examined the effects of prolonged (4 days) high frequency stimulation (HFS) of the subthalamic nucleus (STN), in comparison with those of STN lesion, on the dopamine denervation-mediated cellular changes in the basal ganglia in a Wistar rat model of Parkinson's disease. STN HFS counteracted the dopamine lesion-induced increase in GAD67 mRNA expression in the output structures of the basal ganglia, as shown previously after STN lesion, providing cellular support for the similar antiparkinsonian benefits produced by the two surgical procedures. The dopamine denervation-induced increase in GAD67 mRNA levels in the globus pallidus was partially antagonized after HFS and totally reversed after ibotenate-induced STN lesion. The overexpression of striatal enkephalin mRNA tended to be further increased by HFS but was antagonized by STN lesion. The decrease in striatal substance P mRNA levels was affected neither by STN HFS nor lesion. As STN HFS for two hours was previously found not to interfere with the effects of dopamine lesion in the globus pallidus and striatum, the present data provide strong evidence that the effects of STN surgery in these structures involve long-term adaptive processes and that the rearrangements mediated by HFS and lesion are, at least in part, different.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call