Abstract
We have used a transfection based approach to analyze the role of neural cell adhesion molecule (NCAM) in myogenesis at the stage of myoblast fusion to form multinucleate myotubes. Stable cell lines of myogenic C2 cells were isolated that express the transmembrane 140- or 180-kD NCAM isoforms or the glycosylphosphatidylinositol (GPI) linked isoforms of 120 or 125 kD. We found that expression of the 140-kD transmembrane isoform led to a potent enhancement of myoblast fusion. The 125-kD GPI-linked NCAM also enhanced the rate of fusion but less so when a direct comparison of cell surface levels of the 140-kD transmembrane form was carried out. While the 180-kD transmembrane NCAM isoform was effective in promoting C2 cell fusion similar to the 140-kD isoform, the 120-kD isoform did not have an effect on fusion parameters. It is possible that these alterations in cell fusion are associated with cis NCAM interactions in the plane of the membrane. While all of the transfected human NCAMs (the transmembrane 140- and 180-kD isoforms and the 125- and 120-kD GPI isoforms) could be clustered in the plane of the plasma membrane by species-specific antibodies there was a concomitant clustering of the endogenous mouse NCAM protein in all cases except with the 120-kD human isoform. These studies show that different isoforms of NCAM can undergo specific interactions in the plasma membrane which are likely to be important in fusion. While the transmembrane and the 125-kD GPI-anchored NCAMs are capable of enhancing fusion the 120-kD GPI NCAM is not. Thus it is likely that interactions associated with NCAM intracellular domains and also the muscle specific domain (MSD) region in the extracellular domain of the GPI-linked 125-kD NCAM are important. In particular this is the first role ascribed to the O-linked carbohydrate containing MSD region which is specifically expressed in skeletal muscle.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.