Abstract

Serotonergic fibres have a pervasive innervation of hypoxic–ischemic (HI)-affected areas in the neonatal brain and serotonin (5-HT) is pivotal in numerous neurobehaviours that match many HI-induced deficits. However, little is known about how neonatal HI affects the serotonergic system. We therefore examined whether neonatal HI can alter numbers of serotonergic raphe neurons in specific sub-divisions of the midbrain and brainstem since these nuclei are the primary sources of serotonin throughout the central nervous system (CNS). We utilised an established neonatal HI model in the postnatal day 3 (P3) rat pup (right common carotid artery ligation + 30 min 6% O 2) and determined the effects of P3 HI on 5-HT counts in 5 raphe sub-divisions in the midbrain and brainstem one and six weeks later. After P3 HI, numbers of 5-HT-positive neurons were significantly decreased in the dorsal raphe dorsal, dorsal raphe ventrolateral and dorsal raphe caudal nuclei on P10 but only in the dorsal raphe dorsal and dorsal raphe ventrolateral nuclei on P45. In contrast, P3 HI did not alter counts in the dorsal raphe interfascicular and raphe magnus nuclei. We also discovered that P3 HI significantly reduces brainstem SERT protein expression; the key regulator of 5-HT in the CNS. In conclusion, neonatal HI injury caused significant disruption of the brainstem serotonergic system that can persist for up to six weeks after the insult. The different vulnerabilities of serotonergic populations in specific raphe nuclei suggest that certain raphe nuclei may underpin neurological deficits in HI-affected neonates through to adulthood.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.