Abstract

Epidemiological studies and clinical trials show that selenium supplementation results in reduction of prostate cancer incidence; however, the form of selenium and mechanisms underlying protection remain largely unknown. Toward this end, we compared the effects of naturally occurring selenomethionine (SM) and Se-methylselenocysteine (MSC) and synthetic 1,4-phenylenebis(methylene)selenocyanate (p-XSC) and p-xylylbis(methylselenide) p-XMS) organoselenium compounds in androgen responsive (AR) LNCaP and its androgen independent clone (AI) LNCaP C4-2 human prostate carcinoma cells on cell growth, secretion of prostate specific antigen (PSA), intracellular redox status and genomic profiles with emphasis on identifying redox sensitive genes. Both p-XSC and p-XMS reduced cell number and total protein concentration compared to control-treated AR and AI cells, while SM and MSC exhibited no effect on growth of AR and AI cells. SM, p-XSC and p-XMS but not MSC inhibited levels of secreted PSA in AR cells. SM, MSC and p-XMS increased glutathione (GSH) levels in AI LNCaP cells. By contrast, in both cell types, only p-XSC significantly decreased GSH concentrations to <50% of control suggesting either an increase in intracellular oxidative stress or a change in GSH/GSSG ratio. On the basis of RT-PCR analysis, SM and p-XSC increased p53 gene expression by 2-fold in AR cells but not in AI cells and only SM enhanced epidermal growth factor receptor in AR cells. Depending on the structure, organoselenium compounds exhibit differential effects on growth, PSA secretion, oxidative stress and selective gene responses in human prostate cancer cells and suggest the potential of developing novel organoselenium compounds as chemopreventive agents in models of human prostate cancer.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.