Abstract

While large differences in microbial biomass and extracellular enzyme activities (EEAs) between rhizosphere and bulk soils have been demonstrated, the potentially different response of microbes and their EEAs in rhizosphere and bulk soils to nitrogen (N) deposition is still not elucidated. We analyzed the microbial biomass and EEAs in the rhizosphere and bulk soils of Sibiraea angustata in an alpine shrubland on the eastern Qinghai-Tibet Plateau after chronic N application. We also analyzed the stoichiometric linkages between plants, microbes, enzymes and soils to clarify the coupled responses of aboveground plants and belowground ecological processes. Microbial nutrient concentrations and activities of EAAs responded differently to N addition in the rhizosphere and bulk soils. In the rhizosphere, N addition caused a significant increase in microbial biomass carbon (C), N and phosphorus (P) concentrations and greater P-degrading enzyme activity (relative to the activities of C- and N-degrading enzymes), which induced a significant reduction in enzyme C:P and N:P ratios. The rhizosphere enzyme N:P ratio was negatively correlated with the N:P ratios of plant, soil and microbe, implying that increased plant and microbial P uptake under N addition may gradually aggravate rhizosphere P limitation. However, for the bulk soil, N addition did not affect microbial biomass but significantly enhanced C-degrading enzyme activity and decreased the enzyme C:N ratio. Meanwhile, the bulk-soil enzyme C:N ratio was negatively correlated with the soil C:N ratio but independent of the plant C:N ratio, implying that N addition may enhance bulk-soil microbial C limitation. Our study suggests that elevated N deposition may induce differential microbial nutrient limitation between the rhizosphere and bulk soils due to the plant-microbe-soil interactions in the rhizosphere. This study highlights the importance of incorporating rhizosphere microbial processes into biogeochemical models describing environmental changes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.