Abstract
The current work investigated the effects of mass-loading the eardrum on wideband absorbance in humans. A non-invasive approach to mass-loading the eardrum was utilized in which water was placed on the eardrum via ear canal access. The mass-loaded absorbance was compared to absorbance measured for two alternative middle ear states: normal and stiffened. To stiffen the ear, subjects pressurized the middle ear through either exsufflation or insufflation concurrent with Eustachian tube opening. Mass-loading the eardrum was hypothesized to reduce high-frequency absorbance, whereas pressurizing the middle ear was hypothesized to reduce low- to mid-frequency absorbance. Discriminant linear analysis classification was performed to evaluate the utility of absorbance in differentiating between conditions. Water on the eardrum reduced absorbance over the 0.7- to 6-kHz frequency range and increased absorbance at frequencies below approximately 0.5 kHz; these changes approximated the pattern of changes reported in both hearing thresholds and stapes motion upon mass-loading the eardrum. Pressurizing the middle ear reduced the absorbance over the 0.125- to 4-kHz frequency range. Several classification models based on the absorbance in two- or three-frequency bands had accuracy exceeding 88%.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.