Abstract

Nitric oxide (NO) that is produced by inducible nitric oxide synthase (iNOS) is associated with the pathophysiology of glomerulonephritis. Numerous studies have focused on the regulation of NO production by iNOS to reduce NO-mediated cytotoxicity. In the present study, we demonstrated the differential effects of two phosphatidylinositol 3-kinase (PI3K) inhibitors, LY294002 and wortmannin, on lipopolysaccharide- (LPS) and interferon (IFN)-γ-induced NO production in a glomerular mesangial cell line, MES-13 cells. At dosages without affecting cell viability of MES-13 cells, 5μM LY294002 showed a more-significant inhibitory effect on LPS/IFN-γ-induced NO production, and iNOS protein and gene expressions than did 1μM wortmannin. Akt phosphorylation in MES-13 cells declined upon the addition of wortmannin, but not upon treatment with LY294002. Suppression of PI3K expression by small interfering (si)RNA exhibited no effect on LPS/IFN-γ-stimulated NO production or iNOS protein expression in MES-13 cells. Neither LY294002 nor wortmannin reduced IFN-γ-induced STAT-1α phosphorylation. LY294002 exhibited a more-significant inhibitory effect on NF-κB luciferase activities than wortmannin in LPS/IFN-γ-stimulated MES-13 cells. Moreover, LY294002, but not wortmannin, accelerated iNOS protein degradation and reduced the iNOS dimer/monomer ratio in MES-13 cells. Although both LY294002 and wortmannin are known as PI3K inhibitors, their differential effects on iNOS expression in MES-13 cells indicate that the effects of LY294002 on inhibiting NF-κB activation and accelerating iNOS protein degradation are through a mechanism independent of PI3K.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.