Abstract

Different populations of mononuclear phagocytes (MO) show considerable diversity of cellular function including prostaglandin E2 (PGE2) biosynthesis. Certain bacterial components enhance PGE2 biosynthesis differentially in selected populations of MO. Interleukin (IL)-10 is proposed to inhibit modulation of PGE2 biosynthesis by down-regulating prostaglandin G/H synthase-2 (PGHS-2) expression. To assess whether IL-10 regulates PGE2 biosynthesis and PGHS-2 expression, splenic and bone marrow MO were isolated from IL-10-deficient (IL-10(-/-)), C57Bl/6 [wild-type (WT) control], and Balb/c (comparison control) mice and were treated with lipopolysaccharide (LPS) and/or interferon-gamma (IFN-gamma) as a model of bacterial inflammation. LPS-induced PGHS-2 expression was similar for splenic MO isolated from the three strains of mice. However, PGE2 released by LPS-treated splenic MO was significantly higher in IL-10(-/-) and Balb/c than in WT cells. In the presence of LPS and IFN-gamma, PGHS-2 expression and PGE2 release by IL-10(-/-) and Balb/c splenic MO were enhanced compared with stimulation with LPS alone or IFN-gamma alone. However, there was no significant increase in PGE2 release from WT splenic MO treated with LPS plus IFN-gamma despite increased PGHS-2 expression. In sharp contrast, PGHS-2 expression and PGE2 release by bone marrow MO were greatly enhanced in IL-10(-/-) cells compared with control cells. Our results indicate that IL-10 regulation of MO PGE2 biosynthesis and PGHS-2 expression is compartment-dependent and that PGE2 production is not linked directly to PGHS-2 levels. Furthermore, our findings emphasize strain-specific differences between C57Bl/6 and Balb/c mice, and Balb/c appears more similar to the IL-10(-/-) than to the C57Bl/6 with respect to prostanoid production.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call