Abstract

The effect of human interferon (IFN)-beta1b (Betaseron) on the proliferation of cultured human vascular smooth muscle and endothelial cells was tested in vitro. IFN-beta1b inhibited thymidine incorporation and growth of primary cultures of human aortic and coronary artery smooth muscle in a concentration-dependent manner. The same concentrations of IFN-beta1b did not inhibit thymidine incorporation or growth of primary cultures of human aortic or coronary artery endothelial cells. IFN-beta1b induced the expression of MxA (an antiviral protein induced by type I IFNs) in both smooth muscle and endothelial cells, suggesting that both cell types express receptors for type I IFNs. The growth-inhibitory effect of IFN-beta1b could be mimicked by commercially available human IFN-beta, but not by IFN-alpha2 or IFN-alpha8. The effect of IFN-beta1b was species specific, as it did not inhibit thymidine incorporation in aortic smooth muscle cells derived from pig, rabbit, rat, or mouse. The action of IFN-beta1b on smooth muscle cells persisted for at least 4 days following a 24 h preincubation with IFN-beta1b. Human vascular smooth muscle cells treated with IFN-beta1b did not release lactate dehydrogenase, nor did they show any morphologic change, suggesting that IFN-beta1b was not toxic to the human vascular smooth muscle cells. IFN-beta1b inhibited vascular smooth muscle growth while having no growth-inhibitory effect on endothelial cells obtained from the same blood vessel, making it a potential candidate for treating pathologic conditions where abnormal vascular smooth muscle proliferation is implicated, such as restenosis following balloon angioplasty or smooth muscle proliferation following vascular stenting.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.