Abstract

The aim of this study was to assess the relationship between high monounsaturated fatty acids (MUFAs) with different levels of polyunsaturated-to-saturated fatty acid (P/S) ratios and body fat loss in diet-induced obesity (DIO) models. Male Golden Syrian hamsters were randomly assigned to the control group (n=12) and obesity group (n=24) for 4 weeks of the high-fat DIO period; afterward, six hamsters from each group were killed. The remaining control hamsters were still fed a low-fat diet. For an additional 8 weeks, the remaining obesity hamsters were switched to a low-fat diet and subdivided into three subgroups (n=6/group): the obesity-control (ObC) group, high MUFA with high P/S ratio oil (HMHR) group and olive oil (OO) group. Serum insulin and leptin concentrations were measured, and hepatic fatty acid metabolic enzymes and adipose differentiation markers were determined using enzyme activities analysis, western blot and semiquantification reverse-transcription PCR. No difference was observed in the mean energy intake through all study periods. After the DIO period, the obesity group increased in weight gain and epididymal fat weight compared with the control group. DIO hamsters in the HMLR group had significant reductions in white adipose tissue deposition and plasma leptin levels, suppression in adipose peroxisome proliferator-activated receptor-γ (PPARγ) and lipoprotein lipase (LPL) mRNA expressions and increases in hepatic acyl-CoA oxidase and carnitine palmitoyltransferase-I activities and mRNA levels compared with those in the ObC group. The HMHR group had upregulated phosphorylation of hormone-sensitive lipase (HSL) relative to total HSL protein levels compared with the OO group. However, the OO group had significantly elevated hepatic de novo lipogenesis compared with the HMHR group. HMHR seemed to be beneficial in depleting white adipose tissue accumulation by decreasing adipose PPARγ and LPL mRNA expressions and mediating phosphorylation of HSL, and by improving hepatic lipolytic enzyme activities and mRNA expressions involved in β-oxidation in DIO hamsters.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.