Abstract

The neuronal nicotinic acetylcholine receptor gene family consists of 11 members, alpha2-alpha9 and beta2-beta4. Three of the genes, those encoding the alpha3, alpha5, and beta4 subunits, are clustered tightly within the genome. These three subunits constitute the predominant acetylcholine receptor subtype expressed in the peripheral nervous system. The genomic proximity of the three genes suggests a regulatory mechanism ensuring their coordinate expression. However, it is likely that gene-specific regulatory mechanisms are also functioning because the expression patterns of the three genes, although similar, are not identical. Previously we identified regulatory elements within the beta4 promoter region and demonstrated that these elements interact specifically with nuclear proteins. One of these elements, E1, interacts with the regulatory factor Puralpha as well as three other unidentified DNA-binding proteins with molecular masses of 31, 65, and 114 kDa. Another element, E2, interacts with Sp1 and Sp3. Because E1 and E2 are immediately adjacent to one another, we postulated that the proteins that bind to the elements interact to regulate beta4 gene expression. Here we report the identification of the 65-kDa E1-binding protein as heterogeneous nuclear ribonucleoprotein K and demonstrate that it affects the transactivation of beta4 promoter activity by Sp1 and Sp3 differentially.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.