Abstract
The incretin hormones: glucose‐dependent insulinotropic polypeptide (GIP) and glucagon‐like peptide‐1 (GLP‐1) are important regulators of many aspects of metabolism including insulin secretion. Their receptors (GIPR and GLP‐1R) are closely related members of the secretin class of G‐protein‐coupled receptors. As both receptors are expressed on pancreatic β‐cells there is at least the hypothetical possibility that they may form heteromers. In the present study, we investigated GIPR/GLP‐1R heteromerization and the impact of GIPR on GLP‐1R‐mediated signaling and vice versa in HEK‐293 cells. Real‐time fluorescence resonance energy transfer (FRET) and bioluminescence resonance energy transfer (BRET) saturation experiments confirm that GLP‐1R and GIPR form heteromers. Stimulation with 1 μM GLP‐1 caused an increase in both FRET and BRET ratio, whereas stimulation with 1 μM GIP caused a decrease. The only other ligand tested to cause a significant change in BRET signal was the GLP‐1 metabolite, GLP‐1 (9–36). GIPR expression had no significant effect on mini‐Gs recruitment to GLP‐1R but significantly inhibited GLP‐1 stimulated mini‐Gq and arrestin recruitment. In contrast, the presence of GLP‐1R improved GIP stimulated mini‐Gs and mini‐Gq recruitment to GIPR. These data support the hypothesis that GIPR and GLP‐1R form heteromers with differential consequences on cell signaling.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.