Abstract

BackgroundIncreased pulmonary arterial vascular smooth muscle (PAVSM) cell proliferation is a key pathophysiological component of pulmonary vascular remodeling in pulmonary arterial hypertension (PH). The long-acting β2-adrenergic receptor (β2AR) agonist formoterol, a racemate comprised of (R,R)- and (S,S)-enantiomers, is commonly used as a vasodilator in chronic obstructive pulmonary disease (COPD). PH, a common complication of COPD, increases patients’ morbidity and reduces survival. Recent studies demonstrate that formoterol has anti-proliferative effects on airway smooth muscle cells and bronchial fibroblasts. The effects of formoterol and its enantiomers on PAVSM cell proliferation are not determined. The goals of this study were to examine effects of racemic formoterol and its enantiomers on PAVSM cell proliferation as it relates to COPD-associated PH.MethodsBasal, thrombin-, PDGF- and chronic hypoxia-induced proliferation of primary human PAVSM cells was examined by DNA synthesis analysis using BrdU incorporation assay. ERK1/2, mTORC1 and mTORC2 activation were determined by phosphorylation levels of ERK1/2, ribosomal protein S6 and S473-Akt using immunoblot analysis.ResultsWe found that (R,R) and racemic formoterol inhibited basal, thrombin- and chronic hypoxia-induced proliferation of human PAVSM cells while (S,S) formoterol had lesser inhibitory effect. The β2AR blocker propranolol abrogated the growth inhibitory effect of formoterol. (R,R), but not (S,S) formoterol attenuated basal, thrombin- and chronic hypoxia-induced ERK1/2 phosphorylation, but had little effect on Akt and S6 phosphorylation levels. Formoterol and its enantiomers did not significantly affect PDGF-induced DNA synthesis and PDGF-dependent ERK1/2, S473-Akt and S6 phosphorylation in human PAVSM cells.ConclusionsFormoterol inhibits basal, thrombin-, and chronic hypoxia-, but not PDGF-induced human PAVSM cell proliferation and ERK1/2, but has little effect on mTORC1 and mTORC2 signaling. Anti-proliferative effects of formoterol depend predominantly on its (R,R) enantiomer and require the binding with β2AR. These data suggest that (R,R) formoterol may be considered as potential adjuvant therapy to inhibit PAVSM cell proliferation in COPD-associated PH.

Highlights

  • Increased pulmonary arterial vascular smooth muscle (PAVSM) cell proliferation is a key pathophysiological component of pulmonary vascular remodeling in pulmonary arterial hypertension (PH)

  • Binding with β2-adrenergic receptor (β2AR) agonists induces β2AR coupling with Gs proteins, activation of adenylate cyclase and increase of cellular cAMP levels leading to parallel activation of protein kinase A (PKA) and Epac1 that synergize in mediating cAMP-dependent growth inhibition of VSM cells [7,8,9,10,11] suggesting that β2AR agonists may be considered as an attractive therapeutic approach to inhibit PAVSM cell proliferation in PH

  • Cell culture Human PAVSM cells were dissociated from pulmonary arteries from failed donor lungs that were obtained from the National Disease Research Interchange (NDRI) (Philadelphia, PA), in accordance with procedures approved by the University of Pennsylvania Committee on Studies Involving Human Beings as previously described [20,25]

Read more

Summary

Introduction

Increased pulmonary arterial vascular smooth muscle (PAVSM) cell proliferation is a key pathophysiological component of pulmonary vascular remodeling in pulmonary arterial hypertension (PH). The long-acting β2-adrenergic receptor (β2AR) agonist formoterol, a racemate comprised of (R,R)- and (S,S)-enantiomers, is commonly used as a vasodilator in chronic obstructive pulmonary disease (COPD). The goals of this study were to examine effects of racemic formoterol and its enantiomers on PAVSM cell proliferation as it relates to COPD-associated PH. Pulmonary arterial vascular smooth muscle (PAVSM) cell proliferation is one of the key pathophysiological components of vascular remodeling in pulmonary hypertension (PH) [1,2]. PH is a common complication of chronic obstructive pulmonary disease (COPD), which is strongly associated with decreased quality of life, increased morbidity and reduced survival of COPD patients [3,4]. Binding with β2AR agonists induces β2AR coupling with Gs proteins, activation of adenylate cyclase and increase of cellular cAMP levels leading to parallel activation of protein kinase A (PKA) and Epac that synergize in mediating cAMP-dependent growth inhibition of VSM cells [7,8,9,10,11] suggesting that β2AR agonists may be considered as an attractive therapeutic approach to inhibit PAVSM cell proliferation in PH

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call