Abstract

Osteoid nodules form in cultures of fetal rat calvarial (RC) cells grown in medium containing 10% FBS and 50 micrograms/ml of ascorbic acid. When 10 mM beta-glycerophosphate (beta-GP) is added, osteoid nodules mineralize in two phases: an initiation phase, which is dependent upon alkaline phosphatase activity for conversion of beta-GP to P(i), and a progression phase that proceeds independently of alkaline phosphatase activity and does not require exogenous phosphate. We have now used this system to investigate the effects of fluoride (F-) on mineralization. In cultures in which osteoid was formed and mineralization initiated in the presence of F-, a dose-dependent inhibition of the initiation of mineralization occurred over a concentration range of 25-500 microM F- (p < 0.001 in all cases). The initiation of mineralization was not inhibited if F- was removed from the cultures at the time when mineralization was initiated with beta-GP. In osteoid nodules grown in the absence of F-, addition of F- resulted in a dose-dependent inhibition of the initiation of mineralization, with significant decreases in 45Ca uptake occurring at F- concentrations of 3 microM (p < 0.01) and higher. However, if F- was added to cultures after mineralization was initiated in the absence of F-, a stimulation of 45Ca uptake was observed at F- concentrations of 250 microM and above (p < 0.001). F- (1-1000 microM) did not affect the conversion of beta-GP to P(i) or alkaline phosphatase activity in the cultures.(ABSTRACT TRUNCATED AT 250 WORDS)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.