Abstract

Retinal detachment is a vision-threatening condition, which occurs when the neurosensory retina is separated from its blood supply. The main purpose of this study was to examine the effect of experimental retinal detachment in rats on cone photoreceptors. Retinal detachment was induced in the eyes of rats via subretinal injection of sodium hyaluronate. Experimental detachment caused a rapid, sustained loss of short (S)- and medium/long (M/L)-wavelength cone opsins. Importantly, S-opsin+ cones were affected earlier than M/L-opsin+ cones and were affected to a greater extent than M/L-opsin+ cones throughout the duration of detachment. In comparison, to cone opsins, reductions in other cone markers-peanut agglutinin PNA and cone arrestin-were substantially less marked. These data suggest that loss of cone opsins does not reflect cone degeneration and may rather indicate prolonged downregulation of specific proteins in affected cones. This conclusion is supported by the lack of TUNEL+- cone arrestin+ double-labelled cells at the time point of greatest rod photoreceptor cell death, together with the partial recovery of cone arrestin+ cell numbers over time. Analysis of retinas that had naturally re-attached reinforced the deduction that few cones die following detachment, but also highlighted that prolonged detachment leads to deconstruction of cone segments that may not be readily reversible. Survival and functional recovery of cones following surgery for retinal detachment is vital for successful recovery of vision. The data suggest that experimental detachment in rats may offer a useful approach to model the response of S-cones to retinal detachment in humans.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.