Abstract

Organic acids play an important role in cadmium availability, uptake, translocation, and detoxification. A sand culture experiment was designed to investigate the effects of citric acid on Cd uptake, translocation, and accumulation in tall fescue and Kentucky bluegrass. The results showed that two grass species presented different Cd chemical forms, organic acid components and amount in roots. The dormant Cd accumulated in roots of tall fescue was the pectate- and protein- integrated form, which contributed by 84.85%. However, in Kentucky bluegrass, the pectate- and protein- integrated Cd was only contributed by 35.78%, and the higher proportion of Cd form was the water soluble Cd-organic acid complexes. In tall fescue, citric acid dramatically enhanced 2.8 fold of Cd uptake, 3 fold of root Cd accumulation, and 2.3 fold of shoot Cd accumulation. In Kentucky bluegrass, citric acid promoted Cd accumulation in roots, but significantly decreased Cd accumulation in shoots. These results suggested that the enhancements of citric acid on Cd uptake, translocation, and accumulation in tall fescue was associated with its promotion of organic acids and the water soluble Cd-organic acid complexes in roots.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.