Abstract

Increased intracellular Ca concentrations are considered to be a major pathomechanism in local anesthetic myotoxicity. Racemic bupivacaine and S-ropivacaine cause Ca release from the sarcoplasmic reticulum of skeletal muscle fibers and simultaneously inhibit Ca reuptake. Examining the optical isomers of both agents, the authors investigated stereoselective effects on muscular Ca regulation to get a closer insight in subcellular mechanisms of local anesthetic myotoxicity. R- and S-enantiomers as well as racemic mixtures of both agents were tested in concentrations of 1, 5, 10, and 15 mm. Saponin-skinned muscle fibers from the extensor digitorum longus muscle of BALB/c mice were examined according to a standardized procedure. For the assessment of effects on Ca uptake and release from the sarcoplasmic reticulum, agents were added to the loading solution and the release solution, respectively, and force and Ca transients were monitored. The effects of S-enantiomers on both Ca release and reuptake were significantly more pronounced than those of racemic mixtures and R-enantiomers, respectively. In addition, the effects of racemates were markedly stronger than those of R-enantiomers. With regard to Ca release, the effects of bupivacaine isomers were more pronounced than the isomers of ropivacaine. These data show that stereoselectivity is involved in alterations of intracellular Ca regulation by bupivacaine and ropivacaine. S-enantiomers seem to be more potent than R-enantiomers, with intermediate effects of racemic mixtures. In addition, lipophilicity also seems to determine the extent of Ca release by local anesthetics.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call