Abstract

Polycyclic aromatic hydrocarbons with the key substance benzo[a]pyrene (B[a]P) are widespread pollutants in the environment and at working places. Nonetheless, the exact underlying mechanisms of toxicological effects caused by B[a]P especially in absence and presence of UV irradiation remain uncertain. This study examines variations in exposure conditions: low B[a]P (4 nM), low B[a]P + UV and high B[a]P (4 μM), selected based on pertinent cytotoxicity assessments. Following cell viability evaluations post-treatment with varied B[a]P concentrations and UV irradiation, the identified concentrations underwent detailed metabolomic analysis via gas chromatography-mass spectrometry. Subsequently, resulting changes in metabolic profiles across these distinct exposure groups are comprehensively compared. Chemometric analyses showed modest regulation of metabolites after low B[a]P exposure compared to control conditions. High B[a]P and low B[a]P + UV exposure significantly increased regulation of metabolic pathways, indicating that additional UV irradiation plus low B[a]P is as demanding for the cells as higher B[a]P treatment alone. Further analysis revealed exposure-dependent regulation of glutathione-important for oxidative defence-and purine metabolism-important for DNA base synthesis. Only after low B[a]P, oxidative defence appeared to be able to compensate for B[a]P-induced perturbations of the oxidative homeostasis. In contrast, purine metabolism already responded towards adversity at low B[a]P. The metabolomic results give an insight into the mechanisms leading to the toxic response and confirm the strong effects of co-exposure on oxidative defence and DNA repair in the model studied.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call