Abstract

Purpose: The objective of the present study was to evaluate the effects of low concentrations of benzalkonium chloride (BAC) (10-7%, 10-6%, or 10-5%) on healthy and glaucomatous human trabecular meshwork (HTM) cells. For this purpose, we used in vitro models replicating a healthy HTM and HTM with primary open-angle glaucoma (POAG) or steroid-induced glaucoma (SG) using two-dimensional (2D) cultures of HTM cells not treated or treated with a 5 ng/mL solution of transforming growth factor-β2 or 250 nM dexamethasone (DEX). Methods: Analyses were carried out for (1) the intercellular affinity function of 2D HTM monolayers, as determined by transepithelial electrical resistance (TEER) measurements; (2) cell viability; (3) cellular metabolism by using a Seahorse bioanalyzer; and (4) expression of extracellular matrix (ECM) molecules, an ECM modulator, and cell junction-related molecules. Results: In the absence and presence of BAC (10-7% or 10-5%), intercellular affinity function determined by TEER and cellular metabolic activities were significantly and dose dependently affected in both healthy and glaucomatous HTM cells despite the fact that there was no significant decrease in cell viabilities. However, the effects based on TEER values were significantly greater in the healthy HTM. The mRNA expression of several molecules that were tested was not substantially modulated by these concentrations of BAC. Conclusions: The findings reported herein suggest that low concentrations of BAC may have unfavorable adverse effects on cellular metabolic capacity by inducing increases in the intercellular affinity properties of the HTM, but those effects of BAC were different in healthy and glaucomatous HTM cells.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call