Abstract

Typical and atypical antipsychotics significantly differ in their neurotransmitter receptor affinity profiles, and their efficacy and side effects in schizophrenic patients. Typical antipsychotics have been found to increase the oxidative (i.e. free radical-mediated) cellular injury in rats. Since schizophrenia also involves oxidative injury, the understanding of differential effects of these antipsychotics on expression of antioxidant enzymes and oxidative injury may be very critical. The effect of chronic exposure of haloperidol (HAL), a typical antipsychotic, was compared to effects of risperidone (RIS) or clozapine (CLZ) or olanzapine (OLZ), atypical antipsychotics on antioxidant defense enzymes and lipid peroxidation in the rat brain. The levels of antioxidant enzymes and hydroxyalkenals (HAEs) were measured in rat brain cytosol and fatty acids were measured in brain cell membranes. Chronic HAL treatment for both 45 and 90 days significantly decreased manganese-superoxide dismutase (MnSOD), copper-zinc superoxide dismutase (CuZnSOD) and catalase (CAT) activity with parallel marked increase in (HAEs), a marker of lipid peroxidation in rat brain. The levels of enzymatic activity very well correlated with the levels of enzyme proteins indicating that the changes were probably in the expression of net protein. However, RIS, CLZ and OLZ treatments did not produce any alterations in the levels of antioxidant enzymes and HAEs, both after 45 and 90 days. There were no alterations in the levels of saturated as well as polyunsaturated fatty acids in brain membranes. These findings indicate that chronic administration of HAL, but none of the studied atypicals induce oxidative stress by persistent changes in the levels of antioxidant enzymes and cause membrane lipid peroxidation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call