Abstract

The purpose of this study was to evaluate the effects of four anesthetic regimens on in vivo contractile function of mouse ankle dorsiflexor muscles. The torque-frequency and torque-velocity relationships were determined for the following anesthetics: fentanyl-droperidol and diazepam (F-d/d); ketamine and xylazine (K/x); pentobarbital sodium (Ps); and methoxyflurane (Mf). Mf, Ps, and F-d/d regimens resulted in comparable contractile responses at low doses, whereas K/x produced a relative depression in isometric contractile function as shown by a decrease in the torque-time integral at the 300-Hz stimulation frequency (-13.9%; P < 0.05). Moreover, K/x caused a shift to the left in the torque-frequency curve as indicated by increases in torque-time integrals at 25 and 50 Hz. Both Ps and F-d/d regimens exhibited dose-dependent effects during the isovelocity contractions. Ps significantly reduced work (-28.7%) and average power (-28.9%) at 800 degrees/s at the high dose. In contrast, F-d/d anesthesia resulted in increases in peak torque (16-20%) and work (15-18%) output at all eccentric contraction velocities at the high dose, whereas average power was increased only at -800 (17%) and -1,000 degrees/s (17%). In conclusion, commonly used anesthetic regimens can affect the contractile response in vivo; K/x and Ps yield smaller torque outputs, whereas Mf and F-d/d consistently produce larger contractile responses. Mf and F-d/d are recommended for use in studying skeletal muscle function in mice in vivo.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call