Abstract
We characterized the cell growth and Epstein-Barr virus (EBV) reactivation for EBV infected epithelial cell lines, GT38, GT39, and GTC-4 using 12-O-tetradecanoylphorbol-13-acetate (TPA). These cell lines grew similarly in liquid medium, and formed colonies in soft agar. The cell growth was inhibited with TPA, dose-dependently in liquid medium. The colony formation was enhanced with low concentrations of TPA, but was inhibited with high concentrations. The latent EBV was reactivated with high concentrations of TPA as shown by the expression of EBV BZLF1 gene product ZEBRA. The effects of TPA on GTC-4 were compared with a Burkitt's lymphoma cell line Raji. The mode of actions of TPA in GTC-4 was different from Raji in terms of cell growth and EBV reactivation. The effective concentrations of TPA for cell growth inhibition and EBV reactivation were higher in Raji than GTC-4. Cell cycle analysis showed that TPA (20 ng/ml) induced cell cycle arrest to Raji but not to GTC-4; however, the rate of trypan blue stained cells increased in the TPA treated GTC-4 but not Raji. These results demonstrated that TPA affects differentially for the stimulation and inhibition of cell growth, and also EBV reactivation depends on TPA concentrations and cell types.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.