Abstract

This study compared the sensitivity of rat prostate MAT-LyLu primary and lymph node metastatic tumors to taxol. Tumors were established by subcutaneous implantation of tumor cells in a hind leg (primary site) of male Copenhagen rats. Lymph node metastases were used for serial transplantation. Eleven pairs of primary and metastatic tumors between the sixth and twentieth generations were harvested and maintained as 3-dimensional histocultures. The effects of taxol (24 hr treatment at 1 nM to 10 microM) were measured by the appearance of apoptotic cells, and by the inhibition of DNA precursor (thymidine) incorporation. To determine the basis of differential sensitivity of primary and metastatic tumors to the DNA inhibition, we examined the expression of multidrug resistance pglycoprotein (Pgp) and the accumulation of 3H-taxol after 24 hr exposure and the retention after a 48 hr washout period. The fraction of apoptotic cells increased linearly with the logarithm of taxol concentration to a maximal value of 25%; the concentration-response curves for primary and metastatic tumors were superimposable. Taxol produced a sigmoidal, concentration-dependent inhibition of thymidine incorporation; the maximal inhibition of approximately 40% was reached at 0.1 and 1 microM for primary and metastatic tumors, respectively. Within the primary or metastatic subgroups, the IC30 (drug concentration that produced a 30% inhibition of DNA synthesis) among consecutive generations varied by < 5 fold, but the primary tumor consistently showed a lower IC30 than the daughter or the parent metastatic tumor (mean, 20-fold; median, 15-fold; range, 6- to 56-fold). The finding that the lower drug sensitivity in metastatic tumors was not exhibited in its daughter primary tumor but was regained in its daughter metastatic tumors suggests that the chemoresistant phenotype is maintained only in lymph nodes and not in the primary site. There were no differences in the Pgp status (neither tumor expressed Pgp), accumulation and retention of taxol in primary and metastatic tumors. Taxol induced apoptosis and inhibited DNA synthesis in the rat MAT-LyLu primary and lymph node metastatic tumors. The apoptotic effect was not different among the two tumors, whereas the primary tumor was more sensitive to the inhibition of DNA synthesis. The differential sensitivity of the two tumors to the DNA effect is not associated with a difference in Pgp expression, drug accumulation nor drug retention, and appears to be associated with changes that are linked to lymph node metastasis.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call