Abstract

Succinate dehydrogenase inhibiting (SDHI) fungicides constitute a relatively novel fungicide group used for gray mold control caused mainly by Botrytis cinerea. Shortly after registration, resistance was observed in fungal populations that correlated with several mutations in the succinate dehydrogenase complex (complex II). In the current study, 30 B. cinerea isolates possessing five different mutations at three different codons of SdhB (P225F, N230I, and H272L/R/Y) were characterized for their sensitivities to eight SDHI fungicides. The results show different sensitivities and cross-resistance patterns between structurally different SDHIs. P225F mutants were resistant in vitro to all SDHIs tested. Similarly, isolates possessing the H272L mutation were highly resistant to boscalid but showed low to moderate levels of resistance to other SDHIs. The N230I mutants were moderately resistant to boscalid, fluopyram, and fluxapyroxad and showed low resistance levels to isopyrazam, bixafen, fenfuram, benodanil, and carboxin. The H272R mutants showed moderate levels of resistance to boscalid and low resistance levels to isopyrazam, fenfuram, and carboxin but remained sensitive to fluopyram, bixafen, fluxapyroxad, and benodanil. Similarly, the H272Y showed moderate levels of resistance to boscalid and very low resistance levels to isopyrazam, bixafen, fenfuram, and carboxin but showed increased sensitivity to benodanil and fluopyram. Boscalid provided moderate to high control of H272R/Y and N230I mutants in detached fruit assays but provided little control against the H272L and P225F mutants. In contrast, fluopyram controlled H272R/Y mutants and provided moderate levels of control toward H272L, N230I, and P225F mutants. Our findings suggest that sensitivity to SDHIs may vary greatly, dependent on the point mutation in the sdhb subunit.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call