Abstract

Polyvinylpyrrolidone superparamagnetic iron oxide nanoparticles (PVP-SPIONs) have unique properties. Due to these characteristics, PVP-SPIONs have been used in several medical applications such as magnetic resonance imaging (MRI) contrast agent or drug delivery system. However, a more comprehensive understanding of the environmental safety of PVP-SPIONs is vital for consumption of these nanomaterials. In this study, we describe the effects of PVP-SPIONs on cell viability of the BT-474 human breast cancer cells. Cell viability of the BT-474 cells treated with PVP-SPIONs (10–800 μg/ml) was assessed by MTT assay. MRC-5 cell line was used as a control. Quantitative real-time PCR was performed to investigate the mRNA expression levels of apoptotic (caspase 3) and anti-apoptotic (BCL2) genes Confluent BT-474 monolayers exposed to PVP-SPIONs showed biphasic effects on cell proliferation. PVP-SPIONs at 10–100 μg /ml promote proliferation of BT-474 cells but not the MRC-5 cells. At higher dosage, PVP-SPIONs have toxicity on BT-474 cells. The results of real-time PCR was in line with MTT assay. The increase of cell proliferation at low PVP-SPIONs concentrations is different from what would be expected for these nanoparticles. Our results suggest that more attentions are needed to ensure the safer use of SPION in nanomedicine.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.