Abstract

Using a patch-clamp technique, we found that the fresh porcine submucosal gland acinar cells contained two functionally distinct cell populations, i.e. physiologically relevant concentration of acetylcholine (ACh, 30 nM) induced two distinct patterns of electric response in tracheal gland acinar cells. One was characterized by an outstanding oscillatory Cl(-)-current activity, and the other was with poor Cl(-)-current response but with a comparable K(+)-current. We examined the effect of epidermal growth factor (EGF) on the ACh-induced electric responses in these cells. EGF affected only the latter (K(+)-prominent) cell type to potentiate significantly the ACh-induced K(+)-current. An immunohistochemistry revealed that the receptor for EGF was identified preferentially on the mucous, but not serous, cells. Genistein, one of the tyrosine-kinase inhibitors, abolished the augmentation effect of EGF on the ACh-induced current. Thus, we identified the serous cell with a Cl(-)-rich current in response to ACh and the mucous cell with a K(+)-dominant response. Moreover, EGF affected the mucous cells alone to potentiate the ACh-induced electric response. EGF may contribute to the pathophysiological alterations in chronic inflammatory airways both in morphological (mucous cell hypertrophy/hyperplasia) and functional (thick viscous hypersecretion) ways.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.