Abstract

Postural disturbances in advanced Parkinson's disease are less responsive to therapy than other cardinal motor signs. The vestibulocollic reflex represents one brain-stem neuronal circuit involved in postural adjustments. The objective of this study was to investigate the vestibulocollic reflex in parkinsonian patients and the effects of subthalamic stimulation and dopa by recording vestibular-evoked myogenic potentials. After overnight withdrawal of medication, 20 patients with Parkinson's disease with (6 men, 4 women; mean age, 64.4 ± 2.2 years) or without (8 men, 2 women; mean age, 62.7 ± 3.9 years) implanted subthalamic electrodes in different treatment conditions were compared with 10 age-matched controls (5 men, 5 women; mean age, 59.6 ± 2.4 years). Vestibular-evoked myogenic potentials were recorded by electromyographic surface electrodes applied to both sternocleidomastoid muscles (band-pass filter, 8-1600 Hz; sampling rate, 5 kHz) and averaged in response to bilateral auditory tone bursts (120 dB SPL; sine waves, 7 ms; 1000 Hz) applied through earphones. Adjusted vestibular-evoked myogenic potential amplitudes were significantly smaller in parkinsonian patients than in controls, in particular in patients without surgery. Administration of dopa, but not subthalamic stimulation, significantly increased amplitudes. Onset latencies were similar for all groups and treatment conditions. Decreased vestibular-evoked myogenic potential amplitudes in parkinsonian patients suggest reduced vestibular nuclei excitability within the brain stem, which is modulated by dopa but not by subthalamic stimulation. This suggests different pathways for the action of both treatment modalities in Parkinson's disease and may explain clinical differences in terms of postural disturbances. © 2012 Movement Disorder Society.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.