Abstract

Dioxin-responsive element-mediated chemical activated luciferase expression (DRE-CALUX) is one of alternative bioassays for the determination of dioxin levels. We have previously established a DRE-CALUX cell line, Huh7-DRE-Luc, by using stable transfection of Huh-7 cells with a reporter plasmid (4xDRE-TATA-Luc) carrying a DRE-driven firefly luciferase gene. It was also shown that arecoline, a major areca nut alkaloid, inhibited the 2,3,7,8-tetrachlorodibenzo- p-dioxin (TCDD)-induced cytochrome P450 1A1 (CYP1A1) activation in Huh-7 cells. The TCDD-activated aryl hydrocarbon receptor (AhR) induces the DRE-CALUX activation and CYP1A1 gene expression via binding to DRE in promoter regions of these dioxin-responsive genes. In the present study, the effect of arecoline on the TCDD-induced activation of DRE-CALUX and CYP1A1 enzyme in Huh7-DRE-Luc and Huh-7 cells, respectively, was examined. It was found that arecoline inhibited TCDD-induced CYP1A1 activation and however enhanced TCDD-induced DRE-CALUX activation. This finding indicates the differential effect of arecoline on the endogenous dioxin-responsive CYP1A1 and on a stably transfected DRE-driven reporter in human hepatoma cells. The present study suggests that induction of DRE-CALUX alone does not necessarily parallel with endogenous CYP1A1 gene expression, and that the reporter assay may detect interactions that are not functional in endogenous gene.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.