Abstract
Changes in winter precipitation that include both decreases and increases in winter snow are underway across the Arctic. In this study, we used a 14-year experiment that has increased and decreased winter snow in the moist acidic tussock tundra of northern Alaska to understand impacts of variation in winter snow depth on summer leaf-level ecophysiology of two deciduous shrubs and a graminoid species, including: instantaneous rates of leaf gas exchange, and δ(13)C, δ(15)N, and nitrogen (N) concentrations of Betula nana, Salix pulchra, and Eriophorum vaginatum. Leaf-level measurements were complemented by measurements of canopy leaf area index (LAI) and depth of thaw. Reductions in snow lowered summer leaf photosynthesis, conductance, and transpiration rates by up to 40% compared to ambient and deep snow conditions for Eriophorum vaginatum, and reduced Salix pulchra conductance and transpiration by up to 49%. In contrast, Betula nana exhibited no changes in leaf gas exchange in response to lower or deeper snow. Canopy LAI increased with added snow, while reduced winter snow resulted in lower growing season soil temperatures and reduced thaw depths. Our findings indicate that the spatial and temporal variability of future snow depth will have individualistic consequences for leaf-level C fixation and water flux by tundra species, and that these responses will be manifested over the longer term by changes in canopy traits, depth of thaw, soil C and N processes, and trace gas (CO2 and H2O) exchanges between the tundra and the atmosphere.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.