Abstract

The secretory granules of salivary glands often display complex internal substructures, yet little is known of the molecular organization of their contents or the mechanisms involved in packaging of the secretory proteins. We used post-embedding immunogold labeling with antibodies to two secretory proteins, agglutinin and alpha-amylase, to determine their distribution in the Golgi apparatus and secretory granules of the human submandibular gland acinar cells. With monoclonal antibodies specific for carbohydrate epitopes of the agglutinin, reactivity was found in the trans Golgi saccules, trans Golgi network, and immature and mature secretory granules. In the granules, labeling was seen in regions of low and medium electron density, but not in the dense cores. Reactivity seen on the apical and basolateral membranes of acinar and duct cells was attributed to a shared epitope on a membrane glycoprotein. Labeling with a polyclonal antibody to amylase was found in the Golgi saccules, immature and mature secretory granules, but not in the trans Golgi network. In the granules, amylase was present in the dense cores and in areas of medium density, but not in the regions of low density. These results indicate that these two proteins are distributed differently within the secretory granules, and suggest that they follow separate pathways between the Golgi apparatus and forming secretory granules. Small vesicles and tubular structures that labeled only with the antibodies to the agglutinin were observed on both faces of the Golgi apparatus and in the vicinity of the cell membrane. These structures may represent constitutive secretion vesicles involved in transport of the putative membrane glycoprotein to the cell membrane.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.