Abstract

The discovery that microRNA (miRNA) regulates metastasis provide a principal molecular basis for tumor heterogeneity. A characteristic of solid tumors is their heterogenous distribution of blood vessels, with significant hypoxia occurring in regions (centers of tumor) of low blood flow. It is necessary to discover the mechanism of breast cancer metastasis in relation to the fact that there is a differential distribution of crucial microRNA in tumors from centers to edges. Breast tissues from 48 patients (32 patients with breast cancer) were classified into the high invasive and metastatic group (HIMG), low invasive and metastatic group (LIMG), and normal group. Samples were collected from both the centers and edges of all tumors. The first six specimens were detected by microRNA array, and the second ten specimens were detected by real-time qRT- PCR and Western blot analyses. Correlation analysis was performed between the miRNAs and target proteins. The relative content of miR-20a and miR-20b was lower in the center of the tumor than at the edge in the LIMG, lower at the edge of the tumor than in the center in the HIMG, and lower in breast cancer tissues than in normal tissues. VEGF-A and HIF-1alpha mRNA levels were higher in the HIMG than in the LIMG, and levels were higher in both groups than in the normal group; there was no difference in mRNA levels between the edge and center of the tumor. VEGF-A and HIF-1alpha protein levels were higher in the HIMG than in the LIMG, and protein levels in both groups were higher than in the normal group; there was a significant difference in protein expression between the edge and center of the tumor. Correlation analysis showed that the key miRNAs (miR-20a and miR-20b) negatively correlated with the target proteins (VEGF-A and HIF-1alpha). Our data suggest that miR-20a and miR-20b are differentially distributed in breast cancer, while VEGF-A and HIF-1alpha mRNA had coincident distributions, and VEGF-A and HIF-1alpha proteins had uneven and opposing distributions to the miRNAs. It appears that one of the most important facets underlying metastatic heterogeneity is the differential distribution of miR-20a and miR-20b and their regulation of target proteins.

Highlights

  • Materials and MethodsMetastasis is the main reason that patients with breast cancer experience treatment failure and death (Desantis et al, 2011)

  • A characteristic of solid tumors is their heterogenous distribution of blood vessels, with significant hypoxia occurring in regions of low blood flow

  • vascular endothelial growth factor (VEGF)-A and HIF-1alpha mRNA levels were higher in the high invasive and metastatic group (HIMG) than in the low invasive and metastatic group (LIMG), and levels were higher in both groups than in the normal group; there was no difference in mRNA levels between the edge and center of the tumor

Read more

Summary

Materials and Methods

Metastasis is the main reason that patients with breast cancer experience treatment failure and death (Desantis et al, 2011). It was necessary to discover the mechanism of breast cancer metastasis in a direction that there has been differential distribution of crucial microRNA in tumors from center to edge. Inclusion criteria included invasive ductal carcinoma, tumor diameter between 2 and 3 cm, no family history of neo-adjuvant therapy and radiotherapy, no family history of other cancers, and no accessory breast cancer Of those patients, 16 met the requirements and entered the High Invasive and Metastatic Group (HIMG). MicroRNA Array For each group of six samples that were randomly selected, the center and edge of the tumor were mixed. Universal reverse transcription primer GCTGTCAACGATACGCTACGTAACGGCATGACAGTG(TT...TT)24N(A, G, C)

F: CTCGCTTCGGCAGCACA F: AAGTGCTTATAGTGCAGGTA F: GCTCATAGTGCAGGTAGAA F
Findings
Discussion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call