Abstract
Objective To investigate the value of statistical parametric mapping (SPM) analysis of 18F-fluorodeoxyglucose (FDG) PET imaging in the differential diagnosis of Parkinsonism in single-case level. Methods SPM software was used to retrospectively analyze the 18F-FDG PET images of 160 patients (104 males, 56 females, age: 30-82 years) who were suspected with Parkinsonism at baseline and were clinical confirmed by follow-up from April 2010 to December 2017. 18F-FDG PET images of patients was compared with those of age-matched healthy controls in single-case level using two-sample t test in SPM software to obtain the imaging diagnosis. By comparing imaging diagnosis with the final clinical diagnosis, the diagnostic accuracy of SPM in the overall cohort as well as the early subcohort (duration of disease less than 2 years (56 males, 22 females, age: 50-82 years)) were calculated respectively. Results Among 160 patients with Parkinsonism, 146(91.2%) had the same 18F-FDG PET diagnosis as their final clinical diagnosis. The diagnostic sensitivity for Parkinson′s disease (PD), multiple system atrophy (MSA), progressive supranuclear palsy (PSP) and cortical basal ganglia degeneration (CBD) were 93.5%(86/92), 92.3%(24/26), 84.0%(21/25) and 15/17, respectively. The specificity were 95.6%(65/68), 95.5%(128/134), 96.3%(130/135) and 100%(143/143), respectively. In the early subcohort, the analysis also achieved similar differential diagnosis effectiveness(92.3%). Conclusion The single-case 18F-FDG PET imaging SPM analysis can be helpful in the early differential diagnosis of Parkinsonism effectively. Key words: Parkinsonian disorders; Positron-emission tomography; Diagnosis, differential; Deoxyglucose
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Chinese Journal of Nuclear Medicine and Molecular Imaging
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.