Abstract
ObjectiveWe aimed to assess whether a combined analysis of dopamine transporter (DAT)- and perfusion-SPECT images (or either) could: (1) distinguish atypical parkinsonian syndromes (APS) from Lewy body diseases (LBD; majority Parkinson disease [PD]), and (2) differentiate among APS subgroups (progressive supranuclear palsy [PSP], corticobasal syndrome [CBS], and multiple system atrophy [MSA]). MethodsWe recruited consecutive patients with neurodegenerative parkinsonian syndromes (LBD, n = 46; APS, n = 33). Individual [123I]FP-CIT- and [123I]iodoamphetamine-SPECT images were coregistered onto anatomical MRI segmented into brain regions. Striatal DAT activity and regional perfusion were extracted from each brain region for each patient and submitted to logistic regression analyses. Stepwise procedures were used to select predictors that should be included in the models to distinguish APS from LBD, and differentiate among the APS subgroups. Receiver-operating characteristic (ROC) analyses were performed to measure diagnostic power. Leave-one-out cross-validation (LOOCV) was performed to evaluate the diagnostic accuracy. ResultsThe model to discriminate APS from LBD showed that the area under the ROC curve (AUC) was 0.923, while the total diagnostic accuracy (TDA) was 86.1% in LOOCV. In the model to distinguish PSP, CBS, and MSA from LBD, the AUC/TDA values were 0.978/94.6%, 0.978/87.0%, and 0.880/80.3%, respectively. In the model to differentiate between CBS and MSA, MSA and PSP, and PSP and CBS, the AUC/TDA values were 0.967/91.3%, 0.920/88.0%, 0.875/77.8%, respectively. ConclusionAn image-based automated classification using striatal DAT activity and regional perfusion patterns provided a good performance in the differential diagnosis of neurodegenerative parkinsonian syndromes without clinical information.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.