Abstract

The clinical manifestations of ischemic cardiomyopathy (ICM) bear resemblance to dilated cardiomyopathy (DCM). The definitive diagnosis of DCM necessitates the identification of invasive, costly, and contraindicated coronary angiography. Many diagnostic studies of cardiovascular disease have tried modal decomposition based on electrocardiogram (ECG) signals. However, these studies ignored the connection between modes and other fields, thus limiting the interpretability of modes to ECG signals and the classification performance of models. This study proposes a classification algorithm based on variational mode decomposition (VMD) and high order spectra, which decomposes the preprocessed ECG signal and extracts its first five modes obtained through VMD. After that, these modes are estimated for their corresponding bispectrums, and the feature vector is composed of fifteen features including bispectral, frequency, and nonlinear features based on this. Finally, a dataset containing 75 subjects (38 DCM, 37 ICM) is classified and compared using random forest (RF), decision tree, support vector machine, and K-nearest neighbor. The results show that, in comparison to previous approaches, the technique proposed provides a better categorization for DCM and ICM of ECG signals, which delivers 98.21% classification accuracy, 98.22% sensitivity, and 98.19% specificity. And mode 3 always has the best performance among single mode. The proposed computerized framework significantly improves automatic diagnostic performance, which can help relieve the working pressure on doctors, possible economic burden and health threaten.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call