Abstract
During critical developmental periods, cholinergic activity plays a key role in programming the development of target cells. In the current study, ontogeny of cholinergic terminals and their activity were contrasted in 4 brain regions of the fetal and neonatal rat using choline acetyltransferase activity, which is unresponsive to changes in impulse flow, and [3H]hemicholinium-3 binding, which labels the high-affinity choline transporter that upregulates in response to increased neuronal stimulation. In all 4 regions (cerebral cortex, midbrain + brainstem, striatum, hippocampus) choline acetyltransferase activity increased markedly from late gestation through young adulthood, but generally did so in parallel with the expansion of total membrane protein, reflective of axonal outgrowth and synaptic proliferation. In contrast, [3H]hemicholinium-3 binding was extremely high in late gestation and immediately after birth, declined in the first postnatal week and then rose again into young adulthood. The ontogenetic changes reflected alterations primarily in the number of binding sites (Bmax) and not in binding affinity. Only the latter phase of development of [3H]hemicholinium-3 binding corresponded to the ontogenetic changes in choline acetyltransferase activity; in the hippocampus, there were disparities even in young adulthood, where [3H]hemicholinium-3 binding showed a spike of activity centered around the 5th to 6th postnatal week, whereas choline acetyltransferase did not. Correction of binding for membrane protein development did not eliminate any of the major differences in developmental patterns between the two markers. These results suggest that development of the choline transporter binding site is regulated independently of the outgrowth of the bulk of cholinergic nerve terminals.(ABSTRACT TRUNCATED AT 250 WORDS)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
More From: Brain Research
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.