Abstract
Growth rate varies across plant species and represents an important ecological strategy for competition, resource-use and fitness. However, empirical studies often show a low predictability of functional traits to tree growth. We measured stem diameter and height growth rates (DGRs and HGRs) of 96 juvenile trees (2-5m tall) of eight evergreen and eight deciduous broadleaf tree species over three consecutive years in a subtropical forest in south-western China. We examined the relationships between tree growth rates and 20 leaf/stem traits that are associated with carbon gain, stem hydraulics and nutrient-use efficiency, as well as the difference between evergreen and deciduous trees. We found that cross-species variations of stem DGR/HGR can be predicted by leaf photosynthetic capacity, leaf mass per area, xylem-theoretical-specific hydraulic conductivity, wood density (WD) and photosynthetic-nutrient-use efficiencies. Higher leaf carbon assimilation and lower leaf/stem constructing costs facilitate deciduous species to be more resource acquisitive and consequently faster growth within a relatively shorter growing season, whereas evergreen species exhibit more conservative strategies and thus slower growth. Furthermore, stem growth rates of evergreen species showed were more dependence on leaf carbon gains, whereas stem hydraulic efficiency was more important for deciduous tree growth. Our results suggest that physiological traits (photosynthesis, hydraulics and nutrient-use efficiency) can predict tree diameter and height growth of subtropical tree species. The differential resource acquisition and use strategies and their associations with tree growth between evergreen and deciduous trees provide insights into explaining the coexistence of evergreen and deciduous tree species in subtropical forests.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.