Abstract
In this work, a theoretical analysis of the impact of the multiple ionization of uracil by 3.5 MeV/u C6+ is developed in the framework of a classical trajectory Monte Carlo method, as recently introduced for multi-electronic targets. The electron emission contribution arising from the multiple electron ionization is explicitly determined and the emission geometries and the reaction regions for double and triple ionization are explicitly identified. The present results suggest that double ionization is mainly characterized by the emission of slow electrons with a relative angle of 80∘–120∘. For triple ionization, on the other hand, the emission seems to occur with the three electrons holding similar interelectronic angles.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.