Abstract

The ability to coordinate approach and avoidance actions in dynamic environments represents the boundary between extinction and the continued survival of many animal species. It is therefore crucial that sensory systems allocate limited attentional resources to the most relevant information to facilitate planning and execution of appropriate actions. Prominent theories of how attention regulates visual processing focus on the distinction between behaviorally relevant and irrelevant visual inputs. To date, however, no study has directly compared the deployment of attention to visual inputs relevant for approach and avoidance behaviors, which naturally occur in dynamic, interactive environments. In two experiments, we combined electroencephalography, frequency tagging, and eye gaze measures to investigate whether the deployment of visual selective attention differs for items relevant for approach and avoidance actions. Participants maneuvered a cursor to approach and avoid contact with moving items in a continuous interactive task. The results indicated that while the approach and avoidance tasks recruited equivalent attentional resources overall, attentional biases were directed toward task-relevant items during approach, and away from task-relevant items during avoidance. We conclude that the deployment of visual attention is guided not only by relevance to a behavioral goal, but also by the nature of that goal.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.