Abstract

It is well known that the semiconductor surface is easily oxidized by air-media in time. This work studieds the characterization of Schottky diodes and changes in depletion capacitance, which is caused by air exposure of a group of Cu/n-Si/Al Schottky diodes. First, data for current-voltage and capacitance-voltage were a Ren, and then ideality factor, barrier height, built-in potential ([Formula: see text], donor concentration and Fermi level, interfacial oxide thickness, interface state density were calculated. It is seen that depletion capacitance was calculate; whereafter built-in potential played an important role in Schottky diodes characteristic. Built-in potential directly affects the characteristic of Schottky diodes and a turning point occurs. In case of forward and reverse bias, depletion capacitance versus voltage graphics are matched, but in an opposite direction. In case of forward bias, differential depletion capacitance begins from minus values, it is raised to first [Formula: see text], then reduced to second [Formula: see text] under the minus condition. And it sharply gones up to positive apex, then sharply falls down to near zero, but it takes positive values depending on DC voltage. In case of reverse bias, differential depletion capacitance takes to small positive values. In other respects, we see that depletion characteristics change considerably under DC voltage.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call