Abstract

Although curcumin in the form of nanoparticles has been demonstrated as a potential anti-tumor compound, the impact of curcumin and nanocurcumin in vitro on normal cells and in vivo in animal models is largely unknown. This study evaluated the toxicity of curcumin-loaded micelles in vitro and in vivo on several tumor cell lines, primary stromal cells, and zebrafish embryos. Breast tumor cell line (MCF7) and stromal cells (human umbilical cord vein endothelial cells, human fibroblasts, and human umbilical cord-derived mesenchymal stem cells) were used in this study. A zebrafish embryotoxicity (FET) assay was conducted following the Organisation for Economic Co-operation and Development (OECD) Test 236. Compared to free curcumin, curcumin PM showed higher cytotoxicity to MCF7 cells in both monolayer culture and multicellular tumor spheroids. The curcumin-loaded micelles efficiently penetrated the MCF7 spheroids and induced apoptosis. The nanocurcumin reduced the viability and disturbed the function of stromal cells by suppressing cell migration and tube formation. The micelles demonstrated toxicity to the development of zebrafish embryos. Curcumin-loaded micelles demonstrated toxicity to both tumor and normal primary stromal cells and zebrafish embryos, indicating that the use of nanocurcumin in cancer treatment should be carefully investigated and controlled.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.