Abstract

The results of first calculations of the differential cross sections for muonic hydrogen scattering on hydrogen molecules are presented. They are functions of the initial and final kinetic energy of the system and the scattering angle. These calculations are based on the respective set of cross sections for muonic hydrogen scattering on hydrogen nuclei, obtained within the framework of the adiabatic method. The Fermi pseudopotential method is used to estimate the molecular binding effects. The influence of electrons on the cross sections under consideration is described in terms of the effective screening potential. Rotational and vibrational transitions are taken into account. The calculated molecular differential cross sections show a strong angular dependence. This effect is very significant for the electronic contributions to the cross sections, e.g. for collision energies above approximately 0.1 eV only the cross sections of small scattering angles are influenced considerably by the screening. Since these differential cross sections give detailed information about the final energies and complicated angular distributions of the scattered muonic atoms they are the proper basis for calculations concerning the deceleration of muonic hydrogen atoms in molecular hydrogen targets and for Monte Carlo simulations of different experiments in muonic physics.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.